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In 1852 Lame [l] formulated the first fundamental problem of the theory of 
elasticity for a rectangular parallelepiped. An approximate solution to this 
problem was given by Filonenko-Borodich [2 and 33 who used Castigliano's 
variational principle. Later Mishonov cli] obtained an approximate solution 
to Lame's problem in the form of divergent triple Fourier series. These 
series contain constants which are found from infinite systems of linear 
equations. Teodorescu [5] has considered a particular case of Lame's prob- 

iz%le 
using his own method the author solves the problem in the form of 
series analogous to those used In [6 to 83 and by Baida In [p and lo] 

In solving problems on the equlllbrlum of a rectangular paralleleplped. The 
solution of the problem reduces to three infinite system of linear equations 
and the author assert8 that these infinite systems are regular. It is shown 
in Section 5 that the infinite systems obtained by Teodorescu, on the other 
hand, will not be regular. 

In the references mentioned above which Investigate Lame's problem the 
authors confine their attention either to obtaining a solution by an appro- 
ximate method, or to reducing the solution process to one of obtalnlng infi- 
nlte systems, leaving these uninvestigated. It must be emphasized that the 
main difficulty in solving this problem lies in investigating the infinite 
systems obtained which are significantly different from the-infinite systems 
of the corresponding plane problem. 

In this paper a solution is given to the first fundamental problem of the 
theory of elasticity for a rectangular parallele 
nal stresses on the iurface (Sections 2, 3 and 4 P 

iped with prescribed exter- 
. For the solution of this 

problem the author has used a form of the general solution of the homogeneous 
Lame equations which contains five arbltrary harmonic functions and which 
constitutes a generalization of the familiar Papkovich-Neuber solution (Sec- 
tion 1). The solution is expressed in the form of double series contalnlng 
four series of unknown constants which can be found from four infinite sys- 
tems of linear algebraic equations. The infinite systems of linear equations 
obtained Is studied for values of Poisson's ratio within the range O<as 0.18. 
It Is shown that for these values of Poisson's ratio the infinite Systems 
are quasi-fully regular. 

1. In the absence of body forces the equations of statics for an elastic 

body are 
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& ;- + Au = 0, $&+Av=O, &g+Aw=O (1.1) 

where u is Poisson's ratio, 8 is the volumetic strain and A Is the 

Laplace operator. 

We seek purely harmonic solutions of Equations (1.1) In the form 

u = 6, ix, y, 4, D = 6, (z, Y, 49 w = 6, (5, Y, 4 (1.2) 

where 64, 6, and bs are harmonic functions. If they satisfy relationship 

a3it+$+$Lo (1.3) 

Equations (1.1) are obviously satisfied. 

Adding to the solution (1.2) the blharmonlc part of the Papkovlch-Neuber 

solution, we obtain the following form for the general 

solution of Equations (1.1): 

Fig. 1 
where 6,) %, hf 64, $, and be are harmonic func- 

tlons related by (1.3). Setting In (1.4) 

where b,_,(x, y, t) Is a harmonic function, we obtain the Papkovlch-Neuber 

solution. 

In the Papkovlch-Neuber solution, of the four arbitrary functions only 
one yields a purely harmonic solution which makes the construction of these 
solutions difficult. This defect has been pointed out by Iiata [ll]. Of the 
five arbitrary harmonic functions In (1.4) two give purely harmonic solutions. 
This considerably simplifies the selection of the eolutaona lndlcated for 
Equations (1.1) and at the same time facilitates the solution of boundfiry- 
value problems for a paralleleplped, which Is emphasized In the solution of 
LamB's problem outlined below. 

2. Without restricting the generality, we shall describe the method 

solution for a particular case: we shall consider the deformation of a 

paralleleplped which is symmetrical about the coordinate planes r - 0 

Y-0 (see Flg.l), which occurs in compression and tension. 

Thus we require to find the functions u(x, y, I), u(r, Y, 2) and 
W(X, y, E) which within the paralleleplped - a s x s a , - b s y s b, 

of 

and 

-J?r,?~L satisfy the differential equations (1.1) and on the surface the 

conditions 
2G(~+&)=$&, Y) at ?.=I (2.1) 

2G (;g + &$) = 412 P, Y> at 2=-l (2.2) 
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G (2 + &) = fl (x, s), G (2 + $) = f”l(2, y) at 2~1 (2.3) 

G (g + 2) = fz (5, Y), G($+$)=F,(x,y) at z=--I (2.4) 

2G ($- + &e) = - q (Y, 2) atr=fa (2.5) 

G(s+$)=O, G(g+$)=O at r=*a (2.6) 

2G $+ 
( +$q = - cp (5, z) at y=*b (2.7) 

G($+$)=O, G($+ -&)=O at y=fb (23) 

Here Q Is the shear modulus. The meaning of the boundary 

obvious from the formulas for Hooke's law. We assume that the 

tlons can be represented In Fourier series 

conditions Is 

boundary func- 

(2.9) 

(i = 1,2) 

(i = 1,2) 

(i = 1,2) 

l&j = ( l/2 for i=O, j>O; j=O, i>O 

I 1 for i>o, i>o 

We write the equilibrium condition for the external stresses 

the paralleleplped as follows 

a b 

--a-b 

where P is the given value of the projection of the resultant 

z-4. Substituting expressions (2.9) for +,(r, k) , we find 

Fourier ccefflclents are related by the expression 

(1) (21 P 
$00 = $00 = + ab 

(2.10) 

applied to 

on the face 

that their 

(2.11) 

We write the familiar expression for a harmonic function 
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(2.12) 

6 = (Cl1 cos a+ + Cl2 sin a& (Cl, cos Bmy + Cl4 sin P,y) (Cl2 coshypm~ + 

+c 16"~?Prn4 + @,I COSq9 + Cgpina,x) (C~c=hfi,&+ CwiahPna Y)X 

X [c,, cos yn(z - I)+ c,, sin yn (z - I)1 + (C31mmmn~ i- c,, inha,,&) X 

(C,, cos f&y+ G4 sin &a) I& cos yn (2 - I) + Gs sin Yn (2 - 011 

PS 
a,=y, pmZJF, nn 

r, = ‘ZT (2.13) 

u mn = ~Pm2+Tn2f IL*= 1/m2+ up2~ Tpm= Vu,"+ Pm* 

Here C,l f c,, > -. .f C38 are arbitrary constants. 

In deriving a solution to the boundary-value problem, we shall use (2.12) 

and select expressions for the harmonic functions appearing in (1.4) such 

that the series composed of the particular solutlons (1.4) satisfy the bound- 

ary conditions (2.3),(2.4),(2.6) and (2.8) In the directions tangential to 

*he surface of the paralleleplped. This is achieved by selecting the con- 

stants in (2.12) and bearing in mind the evenness and oddness of the appro- 

priate displacements and stresses. Thus setting in (1.4) 
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we obtain the following particular solution to the Lame equations (1.:): 

Here C$$ and Cj$ are arbitrary constants, $& and $A are the 

Fourier coefficients of series (2.9). 

In expressions (2.14) we select the particular solutions which contain 

only tht? constant pm ~'8) and carry out a cyclic permutation of variables and 

parameters. As a result we obtain two further types of particular solutions 

to Iamtsls equations 

- amn xdamn x] cos F co9 
?m (2 -I) 

2 z 
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2, (I’_ P,C,:l’ 
mn - 4 (I- ~5) au,+kzamn 

I( 1 - 20 - amn a cotb alnn a) cosha,&z + 

+umnxriahamnx] sinm+cos nx(~l-l) (2.15) 

w (1) - T, C$ 
mn - 4 (I- b) au,~tiact,, 

[(i - 20 - dU,, coth aU,&osW,, x + 

+ umn x8inhct,, x] cos m3 sin nn 'iI- ') 

u (2’ - Up C$ 

np - 4 (1 -a) b&;stibPnp w---5--L, ~0th Wnp) co+npy + 

+Pnpy~Pnpy] sin~cos nn(lLeLJ 

c (2) 
2, (9) - nP 

*' - 4 (I - a) b&;tib&p 
[ (2 - 20 $ bPnp coth bPnp) sinhenpy - 

- pnppqnpy] cos y cos nn: (&- I) 

w (2) - T,Q? 

np - 4 (I- CT) b&;sinh bp,, r(i - 20 - Wnp ~0th h%qJ~shPnpy + 

(2.16) 

+ Pnpysi~&y]cos~sin nn'~~wl) 

(m,n,p=0,i,2,...,Pn,#0,am,#0) 

where Ck!, and CtA are arbitrary constants. 

We seek a solution In the form of the double series 

where cc(l), Co(2) and c,(3) are arbitrary constants. The dash above the sum- 

mation signs Indicates that the summutlon Indices are not zero SimUltaneOUSlY. 

The series (2.17), with no indication of the method of derivation, were given 

In [6] in the solution of a mixed problem on the compression of a rectangular 

paralleleplped. 

Differentiation confirms that the functions represented by the series 

(2.17j satisfy the boundary conditions (2.3),(2.4), (2.6) and (2.8) for shear 

stresses. .The unknown constants c'l' C (2) c l&I 0 , In (2.17) can be deter 

mined uniquely from the boundary condltiots) i;.y),y'?:2),(2.5) and (2.7) 
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After satisfying the boundary conditions (2.1),(2.2),(2.5) and (2.7) we 

obtain the four equalities 

aG 
2 (1 -CT) C COW + c 

0 
(3) + c 

0 y]+ 3 
(3) 1 - 0 

Qj(2, 112, n,cosrn~+ 

m,n=o 

+ i' @)a(!/, 

%P=O 

n, p)cos'+ + ;' {2&[L,'3'~+l?p@q+ 

p, m=O am pm 

+ 6);:) 
1 

cos p!fx cos mny a b = ; hpmqIpg cospy cosrn$ 

p, m=o 

SC 
2(1-G) I cw+ cow ; 1 -y&w] + it m*y (--1)“CD)5(5, m, n) cosb $ 

m, n=O 

+ i’ c---1)“@& [ L$ I$$’ - 
n, P=o 

’ n, P)COSy+p30{2,1_$T 
Pm 

- I?$ c,f:] + 6g} cos py cos y = ; A,,$;; cos p: cos F (2.18) 
p, m=o 

OG 
2(1-a) [ 

i.+!co(l) + c,(a) + cc(a)] i 2 (I? a) f$ ‘mfiLm!? cosmq y 

m. n=O mn 
00 

X Cos nn (llB ‘) + 2 CD1 (y, n, p) co9 nn ';, ') + 

n,p=o 

+ fj f&(2, p,m)cosy=.- i 

P, m=o m. n=O 

~~nqmnco~~cosnx(2sl-z) 

CiG 
2(1-G) C cd”+- “, C,f)L,f) I ; d C2) + co(3q + &) n +Jo bp,p coos p$ x 

x COS~*k--~) 
21 + 2 03(5, 172, n)cos"'(\~')+ 

m.n=o 
co a3 

+ 2 %(z, p, m)cosy = - 2 hnpqnp~~~pc~~~ 
nn(z - 1) 

p,m=o p,n=o 

21 

In which we have Introduced the notations 

L (1) L- ~0th aa,, +sti~~na a , L (2) - bb 
mn nP - 

mn 
cdl Pnpb -t&p 

nP (2.19) 

L C3) = cdl y 
P,n Pm 

I $ ~p*l 2ypm1 
Siah~~pml ’ R,Ip,’ = 1 - rinb 21 

Pml 

(1) 
ap?Tl = - & {lap (fp(!) - fpl?) + Pm (Fan’ - FpA?)l c0*. Tp, z + 

+ [ap(fpifr) + !pZ) + Pm (Fp%'t- Fpi~))~Tpmzll (2.20) 
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thls purpose we expand the functions (2.21) Into the appropriate Fourier 

series and substitute thelr expressions into (2.18). By equating the Fourier 
coefficients for zero values of both Indices we obtain three equations In 

the constants co(l), CO@) and co'31 

+ c,(f)+ co@) + co@) = I!$ [_ 9 _ 2 
a (- I)’ (f,t) - f,?)) 

2nls 1 
s=1 

co(l) 1 1; cs COW + &(3) _ 1,: G [ f$; ; b(- I's'?oo~- 42)) 
(2.22) 

I 
s=1 

and from the first two equalities (2.18), by virtue of (2.11), we obtain the 

flrat equation of (2.22). In (2.18), equating Fourier coefficients for 
values of the Indices not simultaneously zero, we obtain four relations which 
after some transformations assume the form 

A (1) 
mn =- 5 H,$$4A,;) - 

p=o 

-&-I)” -jJ H,%,a’ 1 ([ + (--1)"lA,iit'+ [I---(- I)"] A,!,‘?) + b,;' (2.23) 
s=o 

(m,n=O,l,...; TTZ#Omdp#o whenn=O; s#oOadn#O when m=O) 

A (2) 
np =- 

jy (2lQpO _ 
IPn 

VI=0 

-;(-l)n ; zing) 1 {[ + (-I)“] A$) + [l-(-l)“] Ap?)) + b,$' (2.24) 
s=o 

(n, p=o, 1, 2 ,...; p#Omdm#Owhmn=O; s#Omdn#O~h-p=O) 

A @) = - Pm -$ H$fi!A,:'- ; f&,$A,f'+ b$) (2.25) 
n=o, 2, s=o, 2, 

(p, m=O, 1, 2,. . .; s#bndm#+ whenp=o; p#b.ndn#O when m=o) 

n=1,3, . . . s=1,3,... 

(p,m=O,l, 2,...; p#O whenm=o; m#oOenP=0) 

where 

(2.26) 
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(2.27) 

new constants Ah:, . . ., A$ given by Formulas 

c (1) 
mn = -$ (-4)” (-i)%mnA,,g), c,p -- q (-1)” (-i)pp,pA,aa’ 

C,$ = 2 (- l)p (- I,“&, A,$, Cp$’ = l(-4)p (- l)~~~~Ap~‘~~~~~ 

me fwotma g (Pm, yn, ~2~)~ g (yn, up* Pm) can be obtained 
the fwction g(u,, &,yn) by cyclic permutation OS argumenta. 

Thus all boundary conditiona are satisfied and the solution of the 

(2.32) . 

from 

problem 
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Is given by the series (2.17). The constants C,,(l', co(T) and C,,(3) In the 

series (2.17) can be found from (2.22) and the constants c;:!, . . ., c$,L can 

be expressed in terms of the new constants Ah:, . . .,A$ by means of For- 

mulas (2.32). In order to find the latter we have the Infinite systems 

(2.23) to (2.26) of linear algebraic equations. 

3. It can easily be seen that by applying the rectangle formula we obtain 

or, after evaluating the integral, 

Slmllarly, we obtain the Inequalities 

Also, we evaluate from above the sum of the series 
00 

Its generating function 

f (4 = (p ; x2)z 

for x > 0 has one maximum extremum at the point x1= yJ3 

(I > 0) 

(r > “I 

(I> 0) 

(7 > 0) 

(3.1) 

(3.2) 

(3.3) 

(3 4) 

and one lnflec- 
tlon at the point xp= y . The graph of this function for 0 s x s y 1s a 
convex curve. Within the Interval y 5 x < + = the function monotonically 
decays. We denote the Integral part of y by h = [y] . In evaluating 
from above the sum of series (3.4) we use the trapezoidal formula on the 
convex part of the curve I(X) and the rectangle formula on the remainder. 
We then logically have three possibilities: (1 
but f(h) z f(h + 1) ; (3) h < Xl< Y but 
difficult to show that In all three ca:es the 

It is not 

Substituting the value of I(cc,) and evaluating the Integral, we obtain 

(3.5) 

Similarly, we can derive the Inequalities 

5 * I 4(yl;1) +3*- I (yyp2)* <Tq + Z(r” + 1)" 
p=1, 3,... 

i c-r"yP')' <$ + 3g - I 
4 (r2 + 1Y p=2.4,... 

(T>O) (3.6) 

(r > 0) (3.7) 
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Other estimates of the left-hand side$ of {3.5)s(3,b) are given in [12j. 

4. Proceeding to the study of the Infinlte systems we es37 estimate from 

above the sum of the modull. of the coefficients of the Infinite systems 

(2.23), denating this sum by ??$A. We find that 
Lx! 

T (x1 z MPI 2 
fj W _L O” 

mnp I z H 
02) 

nsm (mp R=i,z, . . .) (4.1) 
p=O S=O 

The cases when m or rt - 81-e zero will be dealt with separately 

M M- 

T&l’ = 5: Hot;) + 2 HnK T,Q = O” 22 H 
mop + s (11) H w osm (m, n = 1,2. ** ) 

p=o s=l p=1 e=o 

WI 

Substituting (2.27),(2.28ft(2.31) into (4-l) and removing terms with zero 

indices, we obtain 

T 0) z t: mn 
*w+ tmFa)+ pm?%) (m,R=i,&...) G-3) 

Here 

t 
w 

mn 

and the expressions (2.13) we evaluate $22 

Also, using the inequalities 

the expressions (2.13), the Inequality (3.1) and the Identity 

‘> 
M 

X 1 
R -2 x.2 +- pa --=m*nz-iG W) 

tla) 
we can evaluate t,, 

-1 
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ma 
a,, + 7, 

7, + pm 
- coth amna - 2 

aamn 
We can easily establish the lnequalitien 

or, by virtue of (4.4), 

t,tW < za _C rmW, rmt4) = _ ’ t773 + Pm) 
Lrnt)aarni 

From (4,3),(4.5) and (4.8) we obtain the inequality 

(4.8) 

(4.9) 

T,t’ < 20 + $ + r,,$’ (m, n = 1,2,. . .), r W) = (12) 
mn rm, + rmt3) + r,t4) 

Further, by substituting (2.27),(2.28),(2.31) into (4.2) and using sue- 

ceaaively inequalities (4.4), expressions (2.13),(4.7) and inequality (3.519 

we aan evaluate Tti 

< 

Tot’<a + -$ + r$” (n = 1, 2, . . .), 
(11) _ Q 

fan - - + 36 (4.10) 
maLog) 

Similarly we can obtain an estimate for Tgk 

T,;‘) < Q + -$- + r,int (m = 1, 2, . . .I9 

For all 0 In the range 0 < o s 0.18 the Inequality 

2~s + $ < 0.9968, g + $ < 0.9968 
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holds. Therefore, from inequalities (4.9) to (4.11) we obtain the general 

estimate 
T,:'< 0.9968 + r,;l) (m, n = 0, 1, 2,. . ; 0 <a < 0.18) (4.12) 

where $2 is determined from Formulas (4.9) to (4.11). Obviously 

r w = 0 ((m” + $)-‘9 mn 

We denote the sum of the moduli of the coefficients of the infinite sys- 

tems (2.24) to (2.26), respectively, by T@) T& II!:,. nlJ, Using the inequal- 

ities of Section 3, and performing analogous operations, we obtain the follow- 

ing analogous estimates: 

T,;)< 0.9968+ r&=' (n, p=o,i, 2,...) 

T$'<0.9968 + rp:" (p, m=O, I,%. . .) (0<6<0.18) (4.13) 

T,$'<0.9968 + rp$ (p, m=O, 1,2,. . .) 

rflP t21) = 0 ((722 + p”f”), rpp = 0 ((p2 + mp) , r2m 
(41) = 0 (($)2 + m2)-1”) 

The estimates (4.12)and (4.13 show that for all values of Poisson's ratio 
a within the range 0 < a 5 0.1 Q the infinite systems 2.23 to (2.26) are 
at least quasi-fully regular. The absolute terms (2.29) 11 2.30 of the lnfl- 
nlte systems are bounded. Therefore, if the solution of the corresponding 
infinite systems is unique, there exists a unique bounded solution to the 
infinite systems under consideration [13]. 

Note that to prove the quasi-full regularity of the infinite systems for 
0 < u i 0.18 we used the very crude Inequalities (4.4) and (4.6). This 
Allows us to hope that for values of o which satisfy the inequality 
0.18 < a 5 0.5 the infinite systems obtained possess the property of regu- 
larity. 

5. In [5] Teodorescu has considered the particular case of the problem 
solved above, when the papallelepiped Is loaded only by Identically dlstrl- 
buted normal stresses p(~, y) on two opposite faces I = f L . The problem 
was reduced to three infinite systems of linear algebraic equations. We 
quote one of these, which in the reference cited was numbered (4.19): 

him = 
4~~2~~2 4v/3,,,2 

gn+l= (h,,a+ Ui2)2 + J.,,75+ CQa (5.2) 

bnn2 = Pm2 + L12# q = G (5.3) 

where v is Poisson's ratio. The author asserts that this system Is regu- 
lar and has a unique bounded solution and can be studied on the basis of the 
same procedures as those outlined by Kallskl In [14]. This assertion Is 
erroneous. In Kallskl's paper completely different Infinite systems are 
obtained and their Investigation has no relation to the system (5.1). We 
shall show that the Infinite system (5.1), on the contrary, Is not regular. 
For, If we evaluate the sum of the moduli of Its coefficients, we find 

Using the identities 
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and the notation (5.3), we obtain 

!I h 
T ~0th h,,, a- 

mnfl 4v 
-- 

mn - f mn .mh2 &,a &&n?l = 
2v 2(1 +v)Ld 

= ’ + 2v + &,,,a&,,, - z&h2 li mna 
(rn, n = 1, 2. . . . ) 

We see now that the infinite system (5.1) Is not regular for all values 
of Poisson's ratio 0 < v i 0.5 . In exactly the same way we can establish 
the irregularity of the other two infinite systems. It follows that the 
assertions contained-in 153 concerning the order of the solutions of the 
Infinite systems are wlthout foundation. 
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